
SMARTBANK Database
Christopher Tao, Emmie Kao, Dr. Ryan McGorty,

Dr. Rae Anderson
07/24/24



1.Introduction
The SMARTBANK database aims to solve the issue of cluttered and disorganized data.

As a minimum viable product (MVP), the SMARTBANK website is expected to be able to store
videos and descriptions and display them when requested. It will consist of two main pages, one
that displays a table of the data in SMARTBANK, and another that provides more information on
the experimental protocol and procedures behind each database entry. In this document, we will
explain the framework behind the program as a MVP as well as future developments.

2.File Structure
Below is an overview of the file hierarchy. Because there are multiple files with the same

name, each time those files are referenced the parent folder will also be listed.



3.File Overview
There are several important files and folders that require descriptions.

3.1 Models.py
Models.py holds a copy of all of the entries inside a database. It allows for smooth

manipulation of the database without resorting to opening a POSTGRESQL interface in the
terminal. After modifying models.py, the changes can be migrated to the database by typing in
the python command “python3 manage.py makemigrations”, which will create a new migration.
This modification can be finalized by adding in the line “python3 manage.py migrate”.

While there are two models.py files, this document will mainly cover the
website/models.py.

3.2 Forms.py
The programmer can customize the fields that are displayed in interactive forms, as well

as the input method. Registration forms can be found inside members/forms.py, while database
edits can be modified in website/forms.py.

3.3 Views.py
All of the functions and logic calls in the website are located inside views.py. Creating

accounts and logging in require navigating through members/views.py, while adding in,
modifying, or showing data points use website/views.py.

3.4 Urls.py
While views.py contains all of the functions, urls.py makes the functions usable. Urls.py

connects each function in views.py to a name and endpoint. Whenever a name is called, such
as “search” or “add_material”, the respective function is called. Other than using the name, the
endpoints can also call a function. Adding a “search/” or a “add_material/” at the end of
smartbankdb.org will result in the same function calls as above.

There are three url pages: members/urls.py, website/urls.py, and
AndersonMcGortyLabDB_Test/urls.py, which will be referenced as urls.py. When endpoints are
called, the program will search urls.py for the endpoint. The other two url files are meant to add
readability to the program, and these files are called by urls.py.

3.5 Templates
Each template folder holds the html files that make up the frontend of the program. Most

of the files are located inside website/templates, although the registration and login pages are
hosted inside members/templates.

4.Software Architecture
4.1 Backend



The backend handles any function calls and logic behind the frontend: it does what the
user is not able to see. This includes getting or changing database entries and searching by a
specific criteria.

For this website, the backend is separated into two main folders: websites and members.
While the website folder contains the necessary files for database management, the member’s
folder provides access control to the database.

4.11 Website Backend Development
The website takes advantage of the functionality of django to create a simple interface.

The backend uses django’s model structure, specifically the table named Softmatterdata, to
modify and update the database structure. The model structure is combined with a forms page
that specifies the input methods for each element. The forms are styled through the widgets
section and filled out when functions are called.

Website/views.py contains all of the functionality behind the buttons and forms. Written
in python, it is a collection of functions that edit or display certain pieces of information. Notably,
the website calls the “index” function when displaying the home page, and it calls “materialInfo”
when creating the additional-information page. These functions are called through a list of
endpoints inside urls.py. The function calls and usability will be explored further in the front end
section.

4.12 Login and Registration
The members folder mimics the structure of the website folder with a model views

structure. Rather than creating personal models for the users, the program takes advantage of
Django’s built-in user model, which includes labels such as username, password, email, and



more. The forms file filters through all of the criteria in the users class and shows the mandatory
fields, which are chosen by the developer.

This form is called through members/views file. This views file contains two functions:
login and registration. The registration file calls the form for the user to fill out, while the login
feature finds a corresponding user given the username and password. Because the website
uses Django’s built-in model for a user, the password has very specific regulations, including a
minimum length and a minimum number of unique characters. Given that the inputted password
does not meet all of the requirements, the user will be met with a popup message. These
functions are called through Django endpoints, similar to the website function calls.

4.13 Database Connectivity
The connection to the database, as well as any other stored information, is set up in the

“settings.py” file. The Database section of the settings holds the keys and passwords necessary
to access the database. The bottom of the file contains several variables labeled “_URL” or
“_ROOT”. These paths point to important folders that store images and file content.

4.14 Image and File Storage
The website model contains several variables that are either called “ImageField” or

“FileField”. However, it is unfeasible to directly store these variables into the database. Images
and Gifs are especially difficult due to their large file size and POSTGRESQL’s lack of image
support. Therefore, rather than saving the raw files into the database, the database stores a url
that points to the original file. These files are located inside the media folder, and the URL and



ROOT variables in the settings allow the program to dictate exactly which folder, and to which
url, each file will be saved.

4.2 Website Frontend Development
The frontend consists of all of the pages that a user can see and interact with. The

frontend comprises of html files, which are located inside the folders labeled “templates.” Each
file represents a different page on the website.

4.21 MVP frontend
The templates that are essential to the website are located inside the website folder.

There are several important files: navbar.html, base.html, and index.html. The navbar.html
creates the bar at the top of the page. The navbar lets the user navigate to different pages when
they click the buttons.

The base.html serves as the support that the rest of the front end is built off of. It imports
all of the necessary components and creates a base template that all of the other html files are
built off of. All other html files use the line {%extends ‘base.html’%} to reference the base
template.

The index html file also extends the base file. It is the homepage that users will see
when they first enter the website. It displays the materials inside the website and provides links
to pages with more information.

4.22 Login and Registration
The html files for logging in and registration can be found inside the members folder. The

registration file uses the class in members/forms.py to display input options. However, the login
html uses a different approach. Rather than directly filling out a form, the user fills out two



separate inputs, which will be sent back to the views.py to verify that the inputs are valid. For
erroneous values in both registration and logging in, the frontend creates a popup message that
tells the user that there was an error with their responses.

4.23 Styling
The frontend uses bootstrap as well as a custom css file to modify the display of the

website. More information about bootstrap can be found here: https://getbootstrap.com/.

4.3 Database
DigitalOcean hosts the database that holds all of the information. The database uses a

POSTGRESQL framework and its credentials can be found in settings.py and environmental
variables can be modified in DigitalOcean.

A database contains multiple tables which can be edited through models.py.

https://getbootstrap.com/


4.4 Domains
DigitalOcean offers a website domain and deployment. However, University of San

Diego has acquired a dedicated DNS domain, smartbankdb.org, which is created through
Bluehost.

Connecting this domain to DigitalOcean required modifying the nameservers on
Bluehost to point towards DigitalOcean’s DNS servers.

5.Post Production Features
Although the MVP, along with the registration feature, has been implemented, there are

still several enhancements that need to be made. The first priority is email verification and
password recovery. Afterwards, modifications to the user interface and security should be
implemented to improve the user experience.


